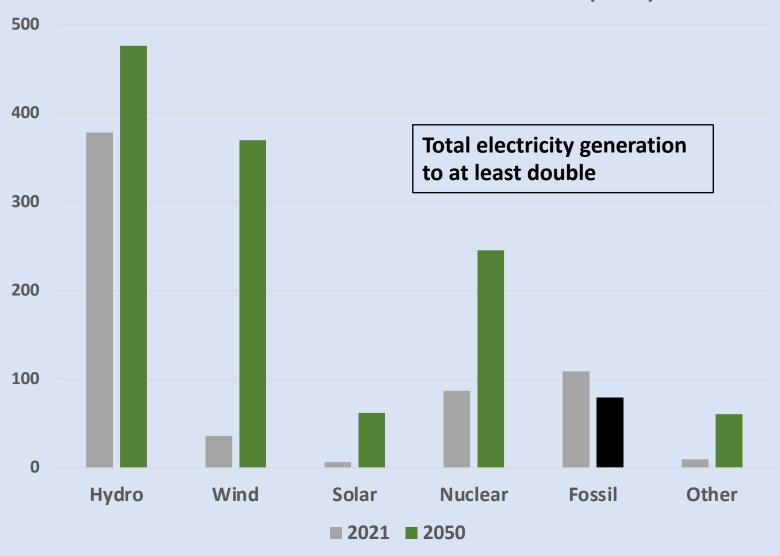
CHASING THE WIND

How Atlantic Canada Can Become an Energy Superpower

October 16, 2023

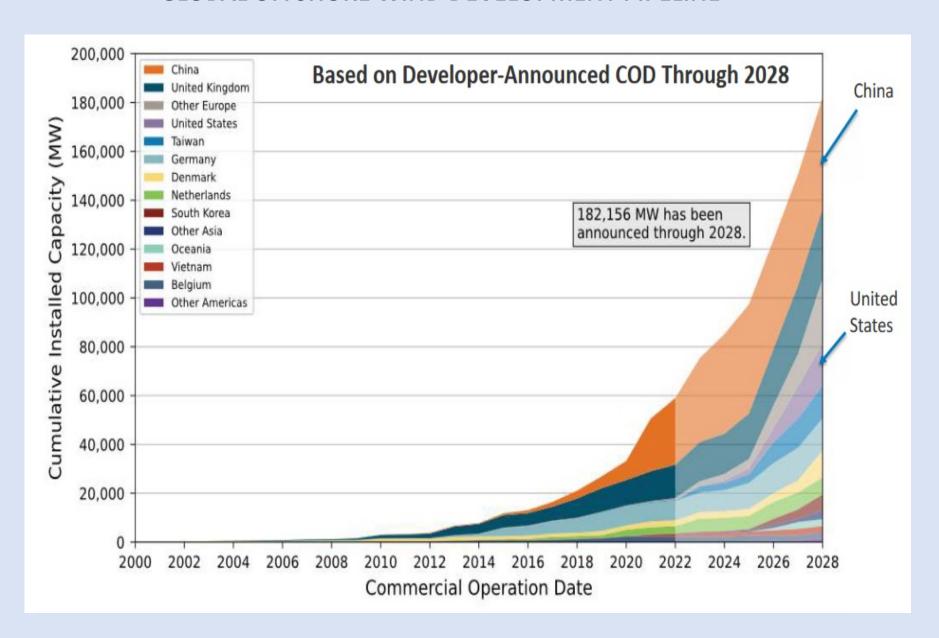
GETTING TO NET ZERO

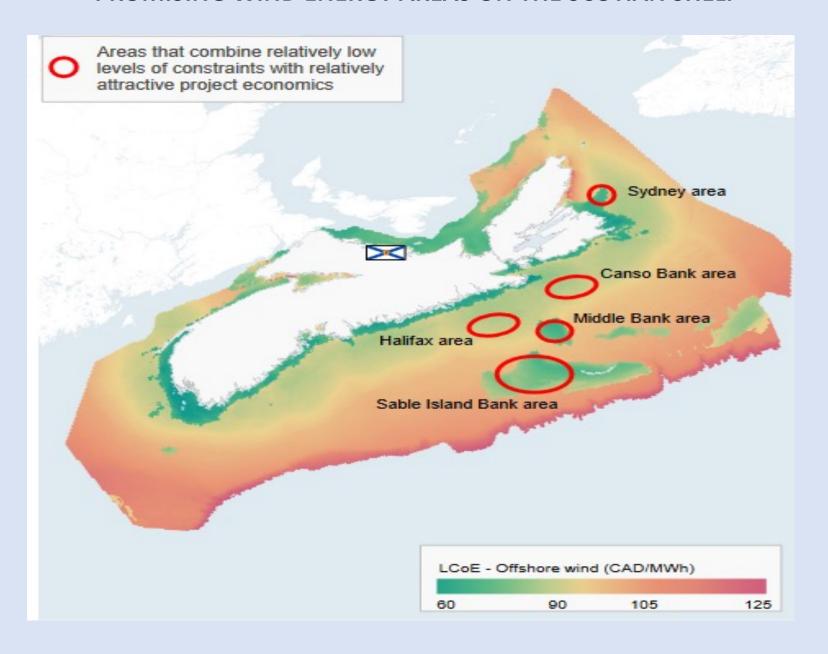

∟ Decar	bonize	the glob	al and	national	energy	systems
----------------	--------	----------	--------	----------	--------	---------

☐ At least *double* electricity generation

☐ Ensure that *all* generation is net non-emitting

WHERE WILL ALL THAT CLEAN ELECTRICITY COME FROM?


ELECTRICITY GENERATION: 2021 VS 2050 (TWh)


WHY OFFSHORE WIND?

□ Strong and relatively consistent, ultra-clean energy source
□ Highest output in winter when demand is greatest
□ Massive scalability with less local opposition
□ Mature technology with favourable and improving economics

GLOBAL OFFSHORE WIND DEVELOPMENT PIPELINE

PROMISING WIND ENERGY AREAS ON THE SCOTIAN SHELF

A SENSE OF SCALE: 15,000 MW OFFSHORE WIND CAPACITY

□ Output of 70,000 gigawatt-hours of clean electricity annually
□ Sufficient to power more than 6 million average Canadian homes
□ Provides 20% of projected *national* increase of wind energy by 2050
□ 750-1,000 offshore turbines (15-20 MW) on 4,000 sq.km.

☐ Capital investment of approximately \$80 billion (\$US 4 million/MW)

ECONOMIC BENEFITS FOR ATLANTIC CANADA

Rising Tide That Will Lift All Ships

☐ Direct jobs: 30,000 during installation; 1,200 permanent
☐ Offshore wind supply chain ecosystem: a new export sector
☐ Attracting industry in search of abundant clean energy
☐ Export revenue from power sales to Canada and potentially US
☐ New power source for green hydrogen

Locally captured benefits depend on a strategy to develop skills and infrastructure

SPECIALIZED WIND TURBINE INSTALLATION VESSEL IN HALIFAX

MAKING IT HAPPEN

- Market scale and access
 - Atlantic, Quebec, Ontario, NE United States (?)
 - New high-capacity transmission (Atlantic Loop +++)
- **□** Cost-competitiveness
 - AEGIR study is encouraging
 - Need detailed engineering-economic assessment
 - Costs come down with scale and innovation
- ☐ Complementary regional assets
 - Excellent port facilities throughout the region
 - Broad base of marine skills (leverage O&G experience; R&D)
 - Collaboration with international players will be essential
- ☐ Policy, Regulatory and Financial support
 - Utility boards need to facilitate the vision
 - Permitting and regulatory processes must recognize the stakes
 - Fiscal support appropriate for a national undertaking

THE ATLANTIC LOOP NEEDS A BOLDER VISION

WHERE TO NEXT?

The following steps need to begin now, and pursued concurrently

- ☐ Concept needs to be critiqued by expert and directly affected communities
- ☐ "Champions" from business and government need to come forward
- ☐ Impact studies underway need to be completed (September 2024)
- ☐ International suppliers and partners need to be identified and engaged

This is not a time for a business-as-usual pace

CONCLUSION

☐ Decarbonization of the energy system is the Project of the Century
☐ If we take climate change seriously, we must be prepared to THINK BIG
☐ Canada's energy transformation depends on massive wind generation
☐ Canada's Atlantic coast provides a world-class wind resource
☐ Its development at scale can make the region an energy superpower
☐ The payoff is prosperity for the region and green energy for the nation